Des scientifiques construisent un robot pour suivre les réseaux commerciaux entre les plantes et les champignons, révélant ainsi les chaînes d'approvisionnement souterraines de la nature

L'équipe SPUN
Partager cet article
26 février 2025

New research uses advanced robotics to track the hyper-efficient supply chains formed between plants and mycorrhizal fungi as they trade carbon and nutrients across the complex, living networks that help regulate the Earth’s atmosphere and ecosystems.

lien de l'article
https://www.dropbox.com/scl/fi/m8t6bh7bw1qb0chh25l18/Travelling-Fungal-Wave-Nature-2025.pdf?rlkey=0gbll8fim8x5ui2qdmjgck4sm&st=ra7o8vzg&dl=0
  • En suivant un demi-million d'autoroutes fongiques et les flux de trafic à l'intérieur de celles-ci, les chercheurs décrivent comment les plantes et les champignons symbiotiques construisent des chaînes d'approvisionnement efficaces.
  • L'équipe a construit un robot d'imagerie qui lui a permis de recueillir en moins de 3 ans des données microscopiques couvrant une période de 100 ans.
  • Work advances our understanding of how fungi move billions of tons of CO2 into underground ecosystems each year

New research published in the journal Nature on February 26, 2025 uses advanced robotics to track the hyper-efficient supply chains formed between plants and mycorrhizal fungi as they trade carbon and nutrients across the complex, living networks that help regulate Earth’s atmosphere and ecosystems.

Travelling waves, traffic flows, and navigating pathfinders

Understanding plant-fungal trade is urgent because these fungal networks draw down around 13 billion tons of CO2 per year into the soil -- equivalent to ~1/3 of global energy-related emissions.  More than 80% of plant species on Earth form partnerships with mycorrhizal fungi, in which phosphorus and nitrogen collected by fungi is exchanged for plant carbon. Despite their global importance, scientists did not understand how these brainless organisms construct expansive and efficient supply chains across their underground networks.  

À l'aide d'un robot d'imagerie conçu sur mesure, l'équipe internationale de 28 scientifiques a découvert que les champignons construisent un réseau mycélien en forme de dentelle qui déplace le carbone vers l'extérieur à partir des racines des plantes dans une formation en forme de vague. Pour soutenir cette croissance, les champignons déplacent les ressources vers et depuis les racines des plantes à l'aide d'un système de circulation à double sens, en contrôlant la vitesse d'écoulement et la largeur de ces autoroutes fongiques en fonction des besoins. Pour rechercher d'autres ressources, les champignons déploient des branches de croissance spéciales qui servent d'"éclaireurs" microscopiques pour explorer de nouveaux territoires, semblant privilégier les opportunités commerciales avec de futurs partenaires végétaux plutôt que la croissance à court terme dans l'environnement immédiat. Les chercheurs décrivent comment ces comportements semblent être coordonnés par des "règles" locales simples qui empêchent le champignon de "surconstruire" et qui définissent une "stratégie de vague itinérante" unique pour la croissance, l'exploration des ressources et le commerce.

“We’ve been mapping the decentralized decision-making processes of mycorrhizal fungal networks, exposing a hyper-efficient blueprint for an underground supply chain,” said Evolutionary Biologist and co-author Dr. Toby Kiers of Amsterdam’s Vrije Universiteit. “Humans increasingly rely on AI algorithms to build supply chains that are efficient and resilient. Yet mycorrhizal fungi have been solving these problems for more than 450 million years. This is the kind of research that keeps you up at night because these fungi are such important underground circulatory systems for nutrients and carbon.”

Advanced robotics to track fungal decision-making

Discovering these new fungal behaviors was only possible because the team built an imaging robot that ran 24/7 in Amsterdam, allowing measurements of how the fungi reshaped their trade routes over time and space. “We discovered that these fungi are constantly adapting their trade routes, adding loops to shorten paths so they could efficiently deliver nutrients to plant roots” said Dr. Thomas Shimizu, co-author and Biophysicist from the physics institute AMOLF in Amsterdam.

Similar to navigation apps tracking congestion, the team then measured “traffic flows” at specific coordinates in the fungal road system, quantifying how fast resources were flowing to and from the root, tracking more than 100,000 particle flows. “By using our robot instead of a human being, we cut the lab time from a century to around three years”, added Shimizu.

“Robotics is making it possible to study fungal behavior in unprecedented detail, and at an unprecedented scale,” said co-author Dr. Merlin Sheldrake. “These techniques open the door to future work to understand the ways that these living, sensing, networks regulate ecosystem function and the Earth’s nutrient cycles”.

Data critical for understanding carbon draw down

The data collected are becoming increasingly important as atmospheric CO2 increases. Scientists want to understand how fungal networks control flows of carbon belowground. Kiers, also Executive Director of the Society for the Protection of Underground Networks  (SPUN), the non-profit organization mapping Earth’s mycorrhizal networks adds, “Because these fungal networks are key entry points of carbon into global soils, we can now explore what triggers fungi to increase carbon flows underground.”

As in human supply chains, the efficiency of mycorrhizal fungal supply-chains depends on the ability of a network to produce and deliver goods to the right place, at the right time, at the lowest possible cost. Dr. Howard Stone, co-author and Professor of Mechanical and Aerospace Engineering at Princeton University adds “Understanding how these fungal networks adjust internal flows and resource trading to build supply chains in response to environment stimuli will be an important direction for future research”

Whether and how designers of human-built supply chains can learn from these principles evolved by plants and fungi over hundreds of millions of years is an exciting frontier. The team is now in the final stages of building a new robot which will increase data collection by a further 10x, allowing them to explore how fungal networks respond to rapid environmental change, including increases in disturbance and rising temperatures.

***

See the authors discuss their work in a video, here. Fungal images and flow videos for download here.

***

Full paper available: https://www.dropbox.com/scl/fi/m8t6bh7bw1qb0chh25l18/Travelling-Fungal-Wave-Nature-2025.pdf?rlkey=0gbll8fim8x5ui2qdmjgck4sm&st=ra7o8vzg&dl=0

“A travelling-wave strategy for plant–fungal trade” Nature https://www.nature.com/articles/s41586-025-08614-x

Research funded by the Human Frontier Science Program (HFSP), Netherlands Organization for Scientific Research (NWO), the Grantham Foundation, the Paul Allen Foundation, and the Schmidt Family Foundation.

Partager cet article